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I.  INTRODUCTION 

rp ~ Appropriate 
Mean Radius at x 

Mwm Particle Surface 

Figure 1. The Pore Tree 

To properly describe coupled chemical 
reactions and gaseous diffusion in porous 
sorbent and catalyst grains, the "pore tree" was 
introduced by Simons and Finson (1979) and 
Simons (1982). The pore tree represents an 
isolated sub-structure, allowing diffusion into 
and out of the porous media without permitting 
transport through the media. This pore structure 
was developed via analogy to the kinetic theory 
of gases with the pore length analogous to the 
mean free path. Under the assumption that the 
pore aspect ratio (pore length to radius) is a 
constant, a pore size distribution was obtained 
that has been confirmed for coal, coal char, 
sorbents, catalysts and kidney stones from both 
men and women. The pore tree was statistically 
derived from the pore size distribution and 
allows the orderly migration of a reactant gas 
from the large pores to the small pores (Fig   1) 

t^&T^ °^ ^r; Md ** C0^ptod toul*ort "« chemis^ » given by Simons (1982, 1983a). The spatially dependent transport/reaction equations are solved for a 

single pore tree and then the total contribution of allies (of all s^ZthTsy^Ti 
obtained by summing the contribution of each tree that reaches the exteL of me system 

L; s ?ntmct^om the;;buik" ^^approach in wMch ^ ^^^0^^ poe is integrated over all pores at a fixed point in space before integrating spatiX The 

imoLTT aTaCh " "^ lf thC Spatial ^dientS in the trlsporf eqSs a^e 
rnphc t functions of pore size. One example of this implicit pore size dependence I Z of 

ühe heterogeneous reactions within porous catalysts and sorbems for whicMte^ tree 

e^UrH      SP°rt m0dd ^ deVd0ped- A XCOnd examPIe » that of coupled ££L5? and remediation reactions m the immobüe region of soil. ainusion and 

In order to describe the subsurface transport of gas and water in soil  the dknerd™ of 
contaminants, and in-situ remediation of contaminated sites  the ire L^s extendTh 
to simulate permeability and bulk transport. The random nature £ he™£5£? wnTch 
formed the basis of the statistical derivation of the pore tree, is app^TpoSustu a^d 

^l^^TT*™* °f ** **" StrUCtUre 1S °btained Via a statisticXdetenn^n of 
tj™??    £?,"* COmm°n t0 Sevend treeS to ^ convection and diffusion tough the 
aZ^ (r^e) S^CtUre * additi0n to diffiision ^ couPled actions in the sSLe 
Znl I?6 ernded P™8 ^ model haS ***" used to «Plain theme^ureTent 
h^ ! F^meabihty of soil due to the measurement scale size (Shouse et al^Z^d 
has^ccessfuUy predicted the bulk gaseous diffusivity in partially saLted soU ^aZgto" 
et. al., 1994) as a function of a saturation scale size. The theory also depicts a permeable 

ZÄJÄS!1 TfC rr0n ,brid8eS ** fl°W ^ " -v"and me small scate diffusion. The model provides an analytic description of a pore structure for 
sod upon which transport and coupled chemical reactions may be ac.urate^upSm^ 



II.  ISOLATED PORE TREE: THE STRUCTURE 

Following the pore structure theory of Simons and Finson (1979) and Simons (1982), 
consider a spherical porous particle of radius a, containing pores of length L, and radius r . 
The pore dimensions range from a microscale of the order of Ängstroms to a macroscale 
which is a significant fraction of the particle radius. The radius of the largest pore is denoted 
by rmax and is given by 

'max=2ae1'3/3tf0 (1) 

where 6 is the total porosity of the particle and K„ is a constant of integration, 
approximately equal to five, which relates the pore length to its radius 

lp=K0rpIQ* (2) 

The radius of the smallest pore is denoted by r^ and is given by 

rmia=2Q/ppssp (3) 

where ps is the density of the solid matrix, sp is the specific internal surface area (several 
hundred m2/g), and 

The particle contains a continuous distribution of pore sizes from rmin to rm„v  . The 
_ -J- mill D1BX 

number of pores within an arbitrary plane of cross-sectional area A and with radius between 
rp and rp +drp is denoted by g(rp)Adrp. The pore distribution function g(r)i& given by 

g{rp)=QI2*$rl (5) 

where g{rp) indicates an average over all inclination angles between the axis of the pore and 
the normal to the plane. Due to the random orientation of the pores, the intersection of a 
circular cylinder with a plane is an ellipse of average area 2rcrp

2. Hence, the porosity is the 
27trp

2 moment of g(rp) and the internal surface area is the 47trp moment of g(r ). The 

expression for g(rp) was derived (Simons and Finson, 1979) from statistical arguments and 
has been validated through extensive comparison of the predicted volume and surface area 
distributions with mercury intrusion data (Stacy and Walker, 1972). This has been 
accomplished for coal, char derived from that coal (Kothandaraman et.al., 1984), sorbents, 
catalysts and even kidney stones from both men (low porosity oxalate) and women (high 
porosity phosphate). 



A characteristic feature of the l/rp
3 distribution depicts that the pore volume between 

r i,, and rp increases linearly with the natural log of r_. It is the functional form of this 
relationship, 

r 

Pore Volume ~ frp g(rp)drp «lnr^ (6) 

that depicts the inverse cubic dependence of g(rp) on rp. A linear display of mercury 
intrusion volume vs. ln(rp) always infers a l/rp

3 distribution. 

The number of pores within the bulk volume V whose pore radius is between  r and 
rp+drp may be defined by Vf(rp)drp. The pore volume is expressed as the 7irp

2lp moment of 

f(rp) and the internal ^surface area is the 27trplp moment of f(rp). The pore size distribution 

functions (f(rp) and g(rp) ) are clearly not independent. The definitions of porosity and 
internal surface area infer that /(r ) is related to g(r ) by 

8(rp)=f(rp)lp/2 (7) 

Equation (7) simply states that the probable number of pores intersecting an arbitrary plane 
increases with the length of the pore and with the density of pores. 

The length of a pore is determined by an arbitrary intersection with another pore and 
is expressed (Simons and Finson, 1979) as a collision integral over the pore distribution 
functions. The analysis suggests that lp , g(rp) and f(rp) are proportional to rp , l/rp

3 and 
l/rp respectively. The constants of proportionality are obtained from integral constraints i e 
the total porosity and internal surface area contained in the pore structure. The expression for 
f(rp) is given by 

f{rp) = T7Z~* (8) 

where the constants were defined above. 

The pore volume distribution corresponding to these distribution functions is similar to 
that utilized in the random pore model (Gavalas, 1980 & 1981). However, the pore tree 
model and the random pore model differ dramatically in their choice of the pore aspect ratio 
(length to diameter) and its implications with respect to pore branching. The random pore 
model allows a single pore to connect two larger pores. This picture lends itself to the 
idealization of instantaneous mixing between the pores and requires that the pore aspect ratio 
be of the order of one hundred. The pore tree theory uses data for r^ to imply (via K ) that 



all pores possess an aspect ratio of the order of ten. Hence, small pores may connect to larger 
pores only on one end and all pores must branch from successively larger pores like a tree or 
river system. 

Each pore that reaches the exterior surface of the particle is depicted as the trunk of a 
tree. The size distribution of tree trunks on the exterior surface of the particle is denoted by 

g(rt)4na2drt where g(rt) is functionally identical to g(rp). Each trunk of radius rt is 
associated with a specific tree-like structure. Let Nt be defined as the branch distribution 
function where Ntdrp is the number of pores of radius rp (within size range drp) in a tree 
whose trunk radius is rt . The total number of pores of radius rp in a sphere of radius a 

may be expressed as 4ßna3f(rp)drp or, as the sum of all pores of radius rp contained 
within every tree in the porous sample, plus all pores of radius rp that are themselves the 
trunk of a tree. Hence, 

f ™7(>>) = fNtg(rt)4Tza2drt + 4*a2g(rp) (9) 

where g(rt) is the number of tree trunks per unit external area of the porous sample and only 
those trees whose trunk radius is greater than rp may contain a pore of radius rp. Using the 
previously derived expressions for r^,  g(rp)and f(rp), Eq.(9) is identically satisfied by 

Nt = rfir* (10) 

The branch distribution function completely characterizes the pore tree. The internal 
surface area and pore volume associated with each pore tree are denoted by St(rJ and Vt(r,), 
respectively, and are expressed as the sum of the contributions from the trunk and that from 
the branches. 

St(rt)=2nrtlt+J2^rplpNtdrp (11) 
rmm 

Vt(rt)=nr^lt+f^lpNtdrp (12) 

Using Eq.(10) for Nt,  St(r,) and Vt(r,) become 

'min 



Sf(/v)=2*r,/, 'O 
r . \  rainy 

(1-6) (13) 

VMt)=*rUt 1+ln 
\\ 

'ndn 

(14) 
// 

where the (1-6) term in St has been included to account for pore combination (Simons, 1979). 

The surface area associated with the pore tree may be several orders of magnitude 
greater than the surface area of the trunk. However, the volume of the pore tree may, at 
most, be one order of magnitude greater than that of the trunk. It should also be noted that 
the above expressions for St and Vt reduce to those appropriate to a single cylindrical pore in 
the limit of rt -M^ (the leaf of the tree). Furthermore, the integrals of St(r.) and Vt(r.) over 
all 5 (/*f) recover the total internal surface area and pore volume of the porous sample. 

Each trunk of radius rt is associated with a specific tree-like structure with continuous 
branching to ever decreasing pore radii. The radius and number of pores is a unique function 
of the distance x into the tree. The coordinate x is skewed in that it follows a tortuous path 
through the branches of the tree. Let n(x) represent the number of pores of radius rp at 
location x in a tree of trunk radius rt. An analysis (Simons, 1982) of this pore tree has 
demonstrated that 

n(x)=rf/rhx) (15) 

and the coordinate x is related to rp by 

drp/dx v, (16) 

The continuous branching model has been used to successfully describe char oxidation 
(Lewis and Simons, 1979; Simons, 1982 & 1983a), coal pyrolysis (Simons, 1983b & 1984) 
and the catalytic cracking of benzene by porous iron oxides (Simons et al., 1986). It was also 
used to successfully describe sulfur sorption (S02 and H2S) by porous calcine (CaO) in the 
limit of zero utilization (Simons and Rawlins, 1980; Simons et al., 1984) and was later 
extended to include CaS04 and CaS deposits (Simons and Garman, 1986; Simons et al., 1987; 
Simons, 1988; Simons et al., 1988). The subsequent determination of the controlling physical 
parameters led to a new concept for the optimization of the sulfur sorption process (Simons, 
1991; Simons et al., 1992) through spray drying of water soluble organic calcium solutions to 
control the sorbent pore structure. 



HI. INTERCONNECTTVITY 

The first step in determining the size distribution of the interconnected pores and the 

distribution of the permeability is to determine the distribution function Gt{rt,r\dr   which 
represents the number of pores of radius rp (within size range drp) per unit cross section of an 
arbitrary plane and also contained within a tree whose trunk radius is rt. Consider an infinite 
homogeneous isotropic porous media and isolate a spherical volume of that media denoted by 
the radius a. Such a volume is illustrated in Fig. 2. The total number of pores of radius r 
(within size range drp) intersecting plane AA of area rca2 has previously been defined by " 

g(rp)na drp . The pores in plane AA in this size range may also be determined by 

integrating Gt(rt,r^ TZ a2 drp over all trees whose trunk intersects the exterior surface of the 
porous sample. Hence it follows that 

g(rp)*a2drp= f[Gt(rt,rp)na2drp] g(rt)4na2drt (17) 

where only those trees whose trunk radius is greater than rp may contain a pore of radius rp. 

A solution to Eq. (17) for G^rJ will not necessarily be unique. Physical arguments 

will help determine GfasJ and help ensure that it is the particular solution we seek. Since 
Nt represents the number of pores of size rp in the tree and the probability of a pore 

intersecting a plane is proportional to its length, it follows that G,(r,,r) should be 

Figure 2.   Spherical Volume of a Porous Media 



proportional to the product of Nt and yit, i.e., proportional to rt
2/rp\   Eq. (17) is identically 

satisfied by a function which differs from rt
2/rp

3 by ln(rp). 

G,(rr,rJ = 
4ua2rjln(rmaI/r;,) 

(18) 

Note that lnfrp/O introduces an integrable singularity at r^r,^ such that Gt(rt,rp)drp is 
finite at r^w . Hence, there is one and only one largest pore for each reference sphere. 

The probability of trees sharing common branches, i.e., the interConnectivity of the 

pore structure is described in Fig. 3. We seek the distribution function  I(rp)drp which 
represents the number of pores (within size range drp about rp) per unit area of plane AA that 
are connected to both sides of the pore structure through pores at least as large as r    A, is 
defined as the area within plane AA that is open to one side of the porous media through all 
trees of size rt' (through all pores of size r/ that are at least as large as rp). Subsequently, 

A G(r T\dr   represents the number of pores of size rp (within size range drp) per unit area 
ofplaneAA that are contained in a tree of size range drt about rt and are also connected to 
the opposite side of the porous media through all trees denoted by rt'. It follows that the 
distribution function for interconnected pores in plane AA may be obtained by integrating 

AQ Gt{j0r\dTp over all trees (r.) that are large enough to contain a pore of size rp . Hence, 

I(rp)iza2drp= f [A^ir^dr^gir^iza^ (19) 

Figure 3.   Interconnectivity of a Porous Media 

7 



From the above definition of A« , A^ may be expressed as 

Ae = {[{2nr^a2Gt(rrrp)drp\i(rt)2ita2drt (20) 

where the primes on the variables of integration have been omitted. Evaluating Eq. 
yields (20) 

Aa =     max/ P
} (21) 

9 2ß K   } 

from which Eq. (19) yields the common branch distribution function. 

6 ln(r    / r ) 

It has been deduced that the total number of common branches of size r in an 
arbitrary plane scales approximately with the total number of pores of that size'in that plane 
Hence^ there is a probability of interconnectivity at pore size rp that is logarithmic in pore 
size. Defining this probability as Pj(rp) via Eq. (22), 

4ß 
P7(rp= \™' P> (23) 

it is apparent that approximately one percent of all pores of all sizes are interconnected 
through larger pores. 

The broad size range associated with the interconnectivity suggests that a very wide 
range of pore sizes control transport and that a complicated mixture of convective and 
diffusive transport persists through all of pore space. While permeability is dominated by the 
largest pores, it is important to determine the level of convection that is occurring in smaller 
pores in order to accurately describe the fine scale transport necessary to assess chemical 
reactions. In the following sections, bulk permeability, bulk diffusivity and small scale 
convection are addressed using the interconnectivity derived above. 



IV.   PERMEABILITY 

The fundamental relationship governing convection in a porous media is Darcy's Law 

which relates the volume flow rate Qp to the pore radius rp and the pressure gradient ^ 
dx 

P     8n      dx, 
(24) 

where \i is the viscosity of the fluid. The bulk permeability (k) is defined in 
terms of the volume flow rate across the cross sectional area A 

k = Q\i 
A(-dpldx) 

(25) 

Convection across plane AA in Fig. 4 will possess contributions from two primary 
sources illustrated in Figs. 4a and 4b. Fig. 4a illustrates the case where the convection in 
plane AA is due solely to the pores that are interconnected in that plane. Fig. 4b illustrates 
the case where the convection in plane AA is due to the smaller pores in the pore tree that 
are interconnected outside of plane AA. This connectivity will translate into a slower velocity 
in the pore crossing plane AA but could be significant because 99% of the pores in plane A A 
are not interconnected in that plane. 

a)  Pores Interconnected in Plane AA b)  Pores Interconnected Out of Plane AA 

Fig. 4  Convection in the Pore Tree 



Consider any pore of radius rs in plane A A of Fig. 4b to be the trunk of a tree. Each 
pore of size rp within the tree possesses the probability Pt(r) of being interconnected and 

each interconnected pore in the tree will carry volume flow rate Q (r ). Since there are 
Nsdrp (Eq. 10: Ns=rs7rp

4) pores in size range drp within the tree, the total volume flow rate 

QAr
s) through trunk r8 in plane A A becomes 

's 

QJO = / QP(rp) PMp) Ns drp (26) 
'nun 

or, to first order, 

. on r„ In(rm„lr\(  rfn\ 

^-    32,7 \i)+H'aT (27) 

Within this approximation, it is seen that Q„(rs) is identical to the volume flowing 
through the pores that are interconnected within plane AA. i.e., 

which demonstrates that all volume flow through plane AA in pore size rs is dominated by the 
interconnectivity of size rs in plane AA and not by the interconnectivity of smaller pores in 
subsequent branches of the pore tree. Simply stated: case 4a dominates case 4b. 

Since all volume flow through plane AA is limited by the interconnectivity of the 
pores in that plane, Eq. (24) for the volume flow rate may be rewritten to include all 
interconnected pores in area A. Hence, 

(29) 

where I(rp) is the "common branch distribution function" given by Eq. (22). The bulk 
permeability (k) is then expressed as 

k-J f'l'W*, (30) 
r. 

10 



Upon integration, Eq. (30) becomes 

k = 
[ 16 ß J 

(31) 

Equation (31) resembles a dozen other expressions available in the literature wherein it 
is concurred that the bulk permeability is dominated by the largest pores in the media but the 
unknown value of that permeability is simply replaced by an unknown pore size to the second 
power. Since the pore size distribution function will be least accurate at the extreme end of 
the size range, i.e. at T^ , no claim can possibly be made that the numerical constants in 
Eq. (31) are in any way superior to those derived elsewhere. One important advantage of the 
extended pore tree model is that it characterizes the distribution of permeability in pore space, 
a feature that will be important in describing fine scale contaminant transport and in-situ 
remediation. A second advantage is the ability to assess statistical errors in the measurement 
of the permeability as a function of the measurement scale size. This exercise is also a good 
test of the extended pore tree model. 

Consider a soil sample with the following physical characteristics: 

Conductivity: v =2 cm/hr 
Permeability: k =0.6 Darcy 
Porosity: 9 =50% 
Pore Aspect Ratio: K„=5 
ln(w/rmin) ß =12 

From Eq. (31), it follows that 

rmax = 300 urn 

and subsequently rmin = 20 Ä. The size of the smallest pore is not an important parameter for 
this application but may be readily adjusted through a minor variation in the value of ß   (e.g., 
for rmin of the order of 100 Ä, ß = 10). The bold assertion made in applying this pore 
structure model to soil is that the l/rp

3 pore size distribution is valid between r^ and r^. 

To investigate the role of the measurement scale size on permeability, consider the 
largest pore rmax contained in the spherical sample of radius "a" as given by Eq. (1). Since 
rmax in Eq. (31) for the permeability represents the largest pore in the media, the 
corresponding value of "a" is denoted a^ and represents the largest sample size for which 
the pore sizes will scale with the dimensions of the sample. From Eqs. (1) and (31) 

24£„ß  r- 
a-—g&* (32) 

Each sphere of radius a,^ will contain one pore of size r^.  A 20 x 20 grid of these spheres 

11 



wül be characterized by the dimension 40^ and contain 400 pores of size r^. Each of 
these pores possess probability P^r,,) of being interconnected. Following Eq. (23)  P,(r ) is 
approximately 0.0025 for rp sufficiently close to r^.   Hence, only one of the 400 largest 
pores in this 20 x 20 grid will be interconnected and the error in the measurement of the 
permeability will correspond to the statistical error of 100% associated with that of a sample 
number of unity. Carrying this argument to a 200 x 200 grid of dimension 400a,,,« , there will 
be 100 interconnected pores corresponding to a statistical error of 10%. Similarly a grid of 
scale 4000a™« will reduce the error to 1%. 

Figure 5 illustrates the predicted permeability measurement error associated with the 
sou sample characterized above (a^ =0.3 cm). Note that the errors associated with the 
measurement of permeability become negligible as the measurement scale size approaches 
several meters. This has been confirmed by the infiltration data of Shouse et. al. (1994). The 
measured value of hydraulic conductivity asymptotes to 2 cm/hr at measurement scales 
greater than 4 meters. At smaller measurement scales, the inferred measurement error is 
calculated under the assumption that the asymptote is precisely 2 cm/hr. The excellent 
agreement between the predicted and inferred error supports the extension of the pore tree 
model to describe a porous permeable media. 

E 

>- 
> 
K- 
Ü 
3 
Q 
Z 
o 
o 

SCALE   OF   MEASUREMENT  (m) 

Figure 5. Error in Permeability Associated with the Measurement Scale 

12 



V.  BULK GASEOUS DIFFUSION IN A PARTIALLY SATURATED MEDIA 

The extended pore tree model is readily adapted to a partially saturated media through 
the assumption that all of the water is contained in pore sizes between r,^ and rsat while only 
gas is contained between rsat and rmax. Since, by Eq. (6), porosity is distributed as ln(rp) in 
pore space, the porosity associated with the air filled pores (6J is approximated by 

0  = ln(rn»x/raJ e (33) 

where rsat is treated as an independent variable of the saturated pore structure. No gaseous 
diffusion is allowed within rp < rsat. With this restriction, the extended pore tree model is used 
to develop an explicit relationship between bulk gaseous diffusivity and the permeability 
which is validated through the diffusivity data of Washington et. al., (1994). It is 
demonstrated that the gas diffusivity scales as l/r8at and it is the sensitivity of rsat to the 
saturated volume that controls the saturated diffusivity. 

The diffusive mass flux in a single pore is given by 

-dPc\ Mp(rp)-nDgr
2

p 
dx 

(34) 

where Dg is the continuum gas diffusion coefficient (Dg=0.2 cm2/s).   Continuum gas phase 
diffusion is valid only for pore radii sufficiently large that Dg is greater than the Knudsen 
diffusion coefficient, 0^=2X^/3, where V is the mean thermal speed of a molecule. 
Knudsen diffusion is characterized by gas collisions with the pore walls and is valid only for 

rp < 3Dg/2V = 0.1 |im. The limit of validity of Eq. (34) is denoted by r^ , the larger of 
either rsat or 3Dg/2V. This limit restricts continuum gaseous diffusion from both the saturated 
pores and the unsaturated pores controlled by free molecule flow. 

Just as in the case of convection, it must be determined whether the mass flux across 
plane AA in Fig. 4 is determined by the interconnectivity of the smaller pores out of the 
plane (Fig. 4b) or by only those pores that are interconnected in the plane (Fig. 4a). Consider 
any pore of radius r8 in plane AA of Fig. 4b to be the trunk of a tree.   Each pore of size rp 

within the tree possesses the probability Pj(r )   of being interconnected and each 

interconnected pore in the tree will carry the mass flow rate M (r ) . Since there are Nsdrp 

(Eq. 10: N8=rsVrp
4) pores in size range drp within the tree, the total mass flow rate Mm(rs) 

through each and every trunk of radius r9 in plane AA becomes 

M XO = / M/rp) P2(rp) Ns drp (35) 

13 



Integration of Eq. (35) yields the mass flux (case 4b) for each trunk of radius rs 

(36) MJO = i-S-L        Vc 

Ar \    &   ) 

where a ln(rmax/rsat) term was eliminated via Eq. (33). 

If the mass flux through plane AA is limited by the pores that are interconnected in 

that plane (case 4a), the mass flux is expressed as M (rs) Pj(rs), and it is immediately seen 
that 

MJrs)>Mp(rs)PI(rs) (37) 

i.e., case 4b dominates case 4a. Since the mass diffusion in plane AA is determined by the 
pore interconnectivity of the smaller pores outside of plane AA, the saturation of those 
smaller pores becomes an important element in the bulk gaseous diffusion. 

Since each pore of radius rs in plane A A carries mass flux M^r^, the bulk diffusion 
coefficient is obtained by integrating Eq. (36) over all pores in that plane 

max. r\   r\       <3 r   rcD 8 r_ _ 

Ar ^' sat 

or, upon integration 

ö„ee„r„ 
'bulk ~ 

SR, 
'sat 8ßC 

and upon eliminating rmax via Eq. (31), the bulk diffusivity Dbulk is expressed in terms of the 
permeability k. 

2D 6 Jk 
*>« = —*^- (40) 

rsat 

The bulk diffusivity cannot increase indefinitely with increasing permeability as 
inferred by Eq. (40). In deriving this expression, the mass flux through the interconnected 
branches of the tree was not constrained from exceeding the diffusive capabilities of the trunk 
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itself. To correct this potential problem, the limit of Dbulk is determined as the maximum 
diffusive flux in pore r, integrated over all pores in plane AA. 

limit f   «^ gr?8Ws 
DsQ 

(41) 

This limit is illustrated in Figure 6 together with the predicted values of Dbua. for an 
extended range of values of permeability and the saturation radius, rsat. Model predictions 
correspond to the measured values of 0a=0.2 and 9=0.5 from Washington et. al., (1994), 
and the diffusivity data suggest a value of rsat in the range of 10 ^im to 100 |im. An exact 
comparison of the present theory to the least squared fit of the data suggests a value of 
30 (im. While the excellent agreement with the data of Washington et. al., (1994) does 
substantiate the present theory, there is clearly a very wide range of possible values for D,^ 
in partially saturated soil which will depend upon an unknown saturation radius. A two order 
of magnitude decrease in the saturation radius will increase the bulk diffusivity by two orders 
of magnitude and yet the corresponding increase in the air filled porosity is, by Eq. (33), only 
33%. Hence, field measurements of the unsaturated volume are not sufficiently accurate to 
correlate bulk diffusivities. If bulk diffusivities are to be correlated with field data, such 
measurements should attempt to measure the saturation radius. 

E 
u 

> 
3 

10 10 10 104 10J 10' 

PERMEABILITY    (cm2) 

10J 10' 10^ 

Figure 6. Bulk Diffusivity of a Partially Saturated Soil 
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VI.   PERMEABLE SUB-RANGE 

The present theory offers the opportunity to investigate some of the features of the 
pore structure that are relevant to the fine scale contaminant transport and remediation 
reactions. One such feature is the distribution of permeability in pore space. While the bulk 
permeability is dominated by the largest pores, some permeability occurs in smaller pores. It 
is the balance of the sub-scale convection with the small scale diffusion that will control 
contaminant transport and in-situ remediation. 

The analysis and data comparison on the errors introduced by the measurement scale 
size, section IV, has shown that soil with a bulk permeability of 0.6 Darcy possesses, on 
average, one large interconnected pore in any 12 cm by 12 cm cross section. To allow the 
penetration of the permeate throughout such a coarse grid, it will be shown that there is a 
very extensive permeable sub-range in the pore structure which does not contribute 
significantly to the bulk permeability but in which convection dominates diffusion. 

To evaluate the permeable sub-range, Eq. (31) is rewritten to express the permeability 
contained in pores of radius rp (rp < r^) or smaller 

t-l-^ 
\2 

(42) 
sr 16 ßj 

where k,r represents the permeability in the sub-range dimension to be defined by Lsr(rp). It 
was deduced above that Lsr(rp) must be selected such that there is at least one interconnected 
pore of radius rp in cross-sectional area L8r

2 in order for k^ to be accurate to order unity. 
Subsequently, a 20 x 20 grid of spheres of radius asr will contain one interconnected pore of 
radius r„ 

LJrp)=40asr («) 

where a,r is given by Eq. (32) with k replaced with k„. 

sr 
04/3 

Eqs. (42) to (44) represent the scaling of the pore structure with scale size for all rp < r^ or 
for all a < a^ and all Lsr(rp) <  Lsr(rm J . The balance of convection and diffusion within 
these scale sizes may be assessed. 

The convective flux of species "c" with mass density pc across area L8r
2 is denoted by 

Mk = 9cQ = KLl?c^Pl^)l\^ (45) 
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and the diffusive mass flux across the same cross section is expressed as 

MD=Deff(pc/LJL^ (46) 

where the characteristic gradient of pc is pc/ Lsr and the effective diffusion coefficient is D 
'eff- 

The balance between convection and diffusion occurs on the length scale L where the 
convective and diffusive mass fluxes are equal. From Eqs. (45) and (46) 

£ = 100 »D#V% 2v2 

o 

[Q^ (-dp/dx)) 

1/3 

(47) 

The boundary between convective and diffusive transport is illustrated in Figure 7 for a solute 
in a saturated porous media. The effective diffusion coefficient is assumed to be given by the 
porosity times the solute self diffusion coefficient Ds (D,= 105 cm2/s). The boundary between 

100r 

E     10. 
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z 
Ul 
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CO 
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PERMEABLE 
SUB-RANGE 

dp/dx - 0.01 atm/m 

dp/dx = 0.1 atm/m (Hydraulic) 

dp/dx - 1 atm/m 

//// SOIL //// 

DIFFUSION   CONTROLLED 

///// SAND ///// //// GRAVEL //// 

1 10 100 

BULK  PERMEABILITY  (Darcys) 

Figure 7. Permeable Sub-Range for Convection in a Saturated Porous Media 
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sub-scale convection and diffusion is illustrated for the solute in water (p. = 0.01 poise) at 
pressure gradients of 0.01 atm/m, 0.1 atm/m (hydraulic) and 10 atm/m. Also illustrated is the 
length scale associated with the spacing of the large pores controlling the bulk permeability 
(Eqs. (43) and (44) in the limit of rp ->!■„„ ). The results depict a very extensive permeable 
sub-range at bulk permeabilities characteristic of soil, sand and gravel. For soil with a bulk 
permeability of 1 Darcy, the large interconnected pores are nominally 15 cm apart. The soil 
matrix between the large pores experiences a convective mass flux through its smaller pores 
whose mass flow rates are much smaller than that of the bulk permeability but greater than 
that possible by diffusion. At length scales of order one centimeter, diffusion becomes rate 
limiting. Hence, this pore structure model provides a methodology for determining the length 
scale separating the mobile and immobile regions of the soil. The theory depicts that the  size 
of the immobile region is primarily a function of the pressure gradient. 

When the above analysis is applied to gas phase diffusion in an unsaturated media, 
|i is of the order of 10"4 poise and Deff is 0.05 cm2/s (Figure 6). The boundary between 
convection and diffusion occurs on length scales five times as large as those depicted in 
Figure 7 for the same pressure gradients. While the size of the permeable sub-range is 
severely reduced, the entire distribution of species "c" is still limited by a diffusive length 
scale that is primarily a function of the gas pressure gradient. Hence, the length scale 
separating the mobile and immobile regions of the soil is of the order of five centimeters at 
gas pressure gradients equal to the hydraulic pressure gradient (0.1 atm/m) and of the order 
of 10 cm at 0.01 atm/m. 

Similarly, when the above analysis is applied to gas phase diffusion in a partially 
saturated media, \i is of order 10"4 poise and Deff may be as low as 10'3 cm7s (Figure 6). 
Under these conditions, the boundary between convection and diffusion occurs at length scales 
identical to those depicted in Figure 7 and the existence of a permeable sub-range is 
preserved. However, for a partially saturated media, Dbulk should be used for Deff . From Eq. 
(40) we write 

2D 0 ./F D     = 8   a\   sr (48) 
r 'sat 

from which it follows that the length scale separating the mobile and immobile regions of a 
partially saturated soil has a slightly stronger pressure gradient dependence 

L=44 KH   °   8  a (49) 
{^rU-dpldx) 

It is anticipated that the concept of the permeable sub-range will help researchers 
develop relatively simple, physics based submodels for the ground water/remediation codes. If 
these submodels were tested independently from the codes, the codes themselves would not 
require parameter "fitting" and could become more directive than interactive. 
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VII.  SUMMARY 

The pore tree .node, has been extended » — ■* V£g£?£^£, 

charaeterijTihe subsurface »»<»^£X£En nature or «he pore structure 
and the in-situ remediation of MnQ™f^ .^on "f the „re tree, is applied to porous sod 
which formed the basis of the «^*"™£^f is «M via a statistical determ.nahon 
and sand. The interconnectivity of the pores™«^ 1S °     ^^^ and bulk diffuston 
of the "branches" that are common to severi«> to *1^ chemical 

through «he large scale (™Me^rltiie~r   TnTstatistical analysis reported above 
reactions within the smaller ^^ej^rf toConnitivity extends across the entire pore 
has determined that the probability of pore '"^°n"^™ ^ying a decreasing pore size, 
size range, with a slight increase in the' £*£^Ä important to establish die level 
While permeability is dominated by <^f ^X^e scales in order to accurately 

srC^ÄSÄ"-23 *:,on mi coupled " reactions' 
The permeability across a given plane is «jW^i, one 

interconnect«, in that plane. The ^'£ÄB£ a very coarse 
quarter of one percent of all large pores «™™ size error, The extended pore 
grid for the permeability which leads to "^^ efrors in the permeability of sod due 
Le model has successfully explain«1 the^^ment .^.^ ^^ (he low 

to the measurement scale size (Shouse, et.su., i»? I 
probabdity of the interconnectivity. 

x«. ■ i«, »,-mss a riven plane is shown to be limited by the The bulk gaseous diffusivity across a given p ^ ^ 
interconnectivity of the smallerranches «-* <W^ ^ radius of the saturated 
saturated, resulting in a strong ^«^ °f^~^\a of Washington et. al., (1994) 
pore. A comparison of the present theory to.thedimry ^ ^ ^ 
Suggests a saturation radius of 30 pmWhüe the exceue     g ^        ^^ t0 ^ 
sugtantiate the present theory the di« "^correlated with field dab,, such 

?ZZZS£Z££Z the saturation radius. 

The permeability and the bulk ««^^E-XÄ^ "" 
structure and pore interconnectivity OTncePts

H\ ?"™a 2« by the out of plane (Fig. 4b) 

So^ectivity (Fig.4a) and ^.^^^^X*-^^ ■"" ""* difftlSi°n 

interconnectivity. Permeability is lnmftd ^ '^^ t SUCCess of these 
is limited by the intercom,«hvity of the sn,tükr poe PP^        ^ model will srrrs- * -—- - -d,ffusive 
transport. 

Analysis of the permeability has utilized *%%r«%££*%£J5? 
the distribution of the permeability ™* ^J^^ » J* f 
permeable sub-range in the pore «™««^* *£* ., fte balance of the sub-scale 

httszs szrrwi« con«,,«——- 
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or size basis, „ufre reactive ,£„ he fe^er±[ ° T ^ T" «rains "■ °" * ™< "ass 
more nutrients or remediatio„The^ea?frn

8
mT, ^ grainS wU1 locall>' dePle«= 

counterparts. Simultaneous^ the Zn «»vecuve flow than their larger 
resistant to J^llÄ? funding the smaller grains offer more 
available in the eonvSflvTflow me ^7, K .""""'fS °r K™*™™ chemicals will be 
variations in fluid veS wStin^d hj "'«"button of the pores and grains, and the 

•hese «ramp« pJtaÄ £e^dÜ&T f" " ^ '° *"»«"*<« 
convection and small scale diflu^nTwhfeh ™?'fT" °f a me*o<iology to couple 
accurately describe contamin£%%Z££%*^£ '^ ^ * """' <° 
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